Skip to contents

This function prepares the coefficient information saved post regression workflow in Stata and makes them ready for plotting.

Usage

sahel_prep_ggcoefs(
  data,
  variables = c("consum_2_day_eq_ppp", "consum_2_day_ppp", "food_2_day_eq_ppp",
    "food_2_day_ppp", "food_2_day_g_ppp", "food_2_day_g_eq_ppp", "food_2_g_d",
    "FIES_rvrs_raw"),
  var_labels = c("Daily Cons.\n Ad. Equiv.", "Daily Consumption",
    "Daily Food Cons.\n Ad. Equiv", "Daily Food Cons.",
    "Gifted Daily Food\n Cons. Ad. Equiv", "Gifted Daily\n Food Cons.",
    "Consumed Gifted\n Food {0,1}", "Food Security"),
  measure = "avg",
  model_number = 1
)

Arguments

data

A data frame filled with regression output from Stata.

variables

A character vector of variable names to plot.

var_labels

A chacater vector of corresponding variable names.

measure

A string indicating the measure to plot e.g. "avg", b

model_number

Some dataframes have a mht_family variable indicating the model type number. Select the model you want to plot by passing it the corresponding number.

Value

A dataframe ready for barchart plotting.

Examples

# Don't forget to mount the data if using the actual data
# prodregs <-
#  haven::read_dta(r"(U:\fu2_MRT\05_Regstats\fu2_MRT_regstats_hh_prod.dta)")

# Example with simulated data
set.seed(1234)
prodregs <- fabricatr::fabricate(N = 8,
                                 var_name = c("consum_2_day_eq_ppp",
                                               "consum_2_day_ppp",
                                               "food_2_day_eq_ppp",
                                               "food_2_day_ppp",
                                               "food_2_day_g_ppp",
                                               "food_2_day_g_eq_ppp",
                                               "food_2_g_d",
                                               "FIES_rvrs_raw"),
                                 b0 = 0,
                                 b1 = rnorm(N, 0, 1),
                                 b2 = rnorm(N, 0, 1),
                                 b3 = rnorm(N, 0, 1),
                                 avg0 = rnorm(N, 7, 1),
                                 avg1 = rnorm(N, 8, 1),
                                 avg2 = rnorm(N, 9, 1),
                                 avg3 = rnorm(N, 10, 1),
                                 se0 = rnorm(N, 0, 1),
                                 se1 = rnorm(N, 0, 1),
                                 se2 = rnorm(N, 0, 1),
                                 se3 = rnorm(N, 0, 1),
                                 ci95_0 = rnorm(N, 2, 1),
                                 ci95_1 = rnorm(N, 2, 1),
                                 ci95_2 = rnorm(N, 2, 1),
                                 ci95_3 = rnorm(N, 2, 1),
                                 p0 = rnorm(N, 0.8, 0.5),
                                 p1 = rnorm(N, 0.8, 0.5),
                                 p2 = rnorm(N, 0.8, 0.5),
                                 p3 = rnorm(N, 0.8, 0.5),
                                 mht_family = 1) |>
  dplyr::select(-ID)

 sahel_prep_ggcoefs(prodregs)
#> # A tibble: 32 × 7
#>    var_name           mht_family Variable.x Value.x Treatment Variable.y Value.y
#>    <fct>                   <dbl> <chr>        <dbl> <fct>     <chr>        <dbl>
#>  1 "Daily Cons.\n Ad…          1 ci95_0      NA     Control   avg0          6.31
#>  2 "Daily Cons.\n Ad…          1 ci95_1       0.865 Psychoso… avg1          7.29
#>  3 "Daily Cons.\n Ad…          1 ci95_2       1.17  Cash      avg2         10.4 
#>  4 "Daily Cons.\n Ad…          1 ci95_3       0.890 Full      avg3          9.48
#>  5 "Daily Consumptio…          1 ci95_0      NA     Control   avg0          5.55
#>  6 "Daily Consumptio…          1 ci95_1       2.88  Psychoso… avg1          7.50
#>  7 "Daily Consumptio…          1 ci95_2       2.17  Cash      avg2          7.93
#>  8 "Daily Consumptio…          1 ci95_3       2.85  Full      avg3          9.50
#>  9 "Daily Food Cons.…          1 ci95_0      NA     Control   avg0          7.57
#> 10 "Daily Food Cons.…          1 ci95_1       2.97  Psychoso… avg1          6.37
#> # ℹ 22 more rows